
Pseudo-Exhaustive Testing for Software
D. Richard Kuhn and Vadim Okun

National Institute of Standards and Technology
Gaithersburg, MD 20899

kuhn@nist.gov vadim.okun@nist.gov

Abstract

Pseudo-exhaustive testing uses the empirical observation
that, for broad classes of software, a fault is likely trig-
gered by only a few variables interacting. The method
takes advantage of two relatively recent advances in soft-
ware engineering: algorithms for efficiently generating
covering arrays to represent software interaction test
suites, and automated generation of test oracles using
model checking. An experiment with a module of the Traf-
fic Collision Avoidance System (TCAS) illustrates the ap-
proach testing pairwise through 6-way interactions. We
also outline current and future work applying the test
methodology to a large real-world application, the Per-
sonal Identity Verification (PIV) smart card.

Keywords
automated testing, combinatorial testing, software testing

1. Introduction
 Pseudo-exhaustive testing is an established concept in
circuit design. Several different approaches are available
for pseudo-exhaustive testing in digital circuits, but all take
advantage of the fact that, in general, outputs do not depend
on all inputs, but on a subset of them. Circuits are seg-
mented, either logically or physically, and each segment is
tested exhaustively. Applying the same scheme to software
is problematic. Unit testing concentrates on separate seg-
ments of the software, but exhaustive testing of individual
units is still intractable. In addition, interactions among
functions may cause faults and need to be tested.
 We propose an approach to pseudo-exhaustive testing
for software. Empirical observation suggests that the num-
ber of variables involved in software failures is relatively
small, (i.e., on the order of 3 to 6), at least for some classes
of software [14]. Therefore, if we know from experience
that t or fewer variables are involved in failures for a par-
ticular application type and we can test all t-way (or t+1
way) combinations of discrete variables, we have high con-
fidence that the application will function correctly. Looked
at another way, if we know in advance that all failures are
triggered by t or fewer conditions, testing all t-way condi-
tions is in some sense equivalent to exhaustive testing. For
realistic applications it is not possible to test all t-way com-
binations of values for variables that may have 264 values

each, so equivalence classes or other abstraction methods
must be used. This approach may thus be considered
pseudo-exhaustive rather than truly exhaustive.
 The methods we propose would not have been possible
in the past, because even after partitioning variable values
into equivalence classes, testing all t-way combinations for
realistic software can require an exponential number of tests
(tens to hundreds of thousands for much real world soft-
ware). Faster algorithms for generating covering arrays
[5],[12],[17], combined with methods of automatically gen-
erating complete test cases, including test oracles [1],[2],
make it practical and cost-effective to do pseudo-exhaustive
testing of software. We describe this method and illustrate
its application through an experiment with a module of the
Traffic Collision Avoidance System (TCAS). This system
has been used in previous studies of software test methods
and provides a benchmark for evaluation of our pseudo-
exhaustive testing methodology.

2. Combinatorial Testing
 Methods from the field of design of experiments
(DOE) have been applied to quality control problems in
many engineering fields, including limited use for software
[4],[8],[18], DOE seeks to maximize the amount of infor-
mation gained in an experiment with an economical num-
ber of tests. Originally used in agricultural experiments in
the 1920s, DOE methods were set up to produce balanced
coverage of independent variables. For instance, an ex-
periment might involve six varieties of seed with five fer-
tilizers and five soil types, using an orthogonal array in
which every combination occurs exactly once[10]. Early
applications of these methods to software were limited be-
cause of two significant differences between software and
the problems that DOE was originally designed for - needs
for balanced coverage and the number of variables in-
volved – and a lack of adequate tools for generating neces-
sary combinations.
 Constructing tests that provide combinatorial coverage
is a hard problem that has been studied for more than two
centuries. Software testing is different from previous ap-
plications. For instance, software does not have the same
need for balance between parameters: if the combination

1ρ = 3v and 4ρ = 1v occurs in multiple test cases, there

may be some wasted effort but testing soundness is not af-
fected. Software testing typically has a vast number of pa-
rameters and corresponding values. Unlike the application
to agriculture, software may have parameters with more
than five or six values. Abstraction methods, such as
equivalence classes, may reduce the number of values, but
the number of variable and value combinations will still be
extremely large.
 Covering arrays are combinatorial objects that can be
generated to represent interaction test suites. A covering
array,),,;(vktNCAλ , is an N x k array. In every N x t su-
barray, each t-tuple occurs at least λ times. In our applica-
tion, t is the strength of the coverage of interactions, k is
the number of components (degree), and v is the number
of symbols for each component (order). In all of our dis-
cussions, we treat only the case when λ = 1, (i.e. that every
t-tuple must be covered at least once). The efficient con-
struction of objects to represent these test suites (called
covering arrays) is an NP-hard problem, but advances
have been made within the past decade [5],[17].
 Software testing using DOE methods, often referred to
as combinatorial testing (or interaction testing), has been
advocated as an efficient means of providing a high level
of coverage of the input domain with a small number of
tests, typically limited to pairwise combinations
[8],[9],[12]. For example, consider a device that has 20
inputs, each with 10 settings (or 10 equivalence classes if
the variables are continuous), for a total of 2010 combina-
tions of settings. The few hundred test cases that can be
built under most development budgets would cover an in-
finitesimally small proportion (< 1510−) of the possible
cases. But the number of pairs of settings is small, and
since every test case must have a value for each of the ten
variables, more than one pair can be included in a single
test case. Only 180 – 200 test cases [8] are required for
pairwise coverage of the example above with 2010 combi-
nations of settings.
 Several authors have demonstrated the effectiveness of
pairwise testing for software. A test set that covers all
possible pairs of variable values can typically detect 50%
to 75% of the faults in a program [4],[9],[26]. In other
work we found 100% of faults detectable by a relatively
low degree of interaction, typically 4-way to 6-way
combinations [14],[15],[27]. Advances in covering array
algorithms make the generation of all 4-way to 6-way
combinations tractable for many realistic testing problems
 Even using covering arrays, a large number of
combinations will be required, but far fewer than fully
exhaustive testing. For the small example used in this
experiment, exhaustive coverage would have required
230,400 combinations, but all 4-way combinations were
covered with 1,450, all 5-way with 4,347, and all 6-way
with 10,902. Clearly, tests for such a large number of

combinations could not be constructed manually. How-
ever, the application of combinatorial methods with model
checking can produce test oracles and more than 17,000
test cases can be generated. These tests can be run with a
few minutes of processing time and a few hours of labor.
In the next section we describe the model checking
approach to test case generation, followed by a review of
the proof-of-concept experiment. We also discuss results
on how combinatorial designs can be efficiently combined
with model checking for software testing.

3. Test Generation Using Model Checking
 One practical problem in software testing is determining
the correct output for a given set of input variable values,
generally referred to as the test oracle problem. If human
intervention is required to check outputs, the number of test
cases will be limited to a few hundred at most, so some
form of automation is essential for thorough testing. One
approach to automated generation of test oracles is model
checking [1],[6], which uses a formal specification to com-
pute expected output for input values and events.
 Model checking is a formal technique based on state
exploration. Input to a model checker has two parts. First is
a state machine defined in terms of variables, initial values
for the variables, environmental assumptions, and a
description of the conditions under which variables may
change value. Second is temporal logic expressions over
states and execution paths. Conceptually, a model checker
visits all reachable states and verifies that the temporal
logic expressions are satisfied over all paths. If an
expression is not satisfied, the model checker attempts to
generate a counterexample in the form of a sequence of
states.
 A common logic for model checking is the branching-
time Computation Tree Logic (CTL), which extends
propositional logic with temporal operators. For example, a
CTL formula AG safe means that all reachable states are
safe, and AG (request -> AX response) means
that request is always followed by response in the
next step.
 In SMV [20], a CTL symbolic model checker, a specifi-
cation consists of one or more modules. One module,
named main, is the top-level module. Figure 1 is an SMV
example. Variables d, b, and f are inputs, e and a are inter-
mediate variables. The statement init(e) := 0; sets e to 0
initially. The next value of e is 1 if the guard f = On is true,
otherwise it is 0. The output is the variable out, which may
be Low or High. Its value is High if a is greater than 10,
otherwise it is Low. The SPEC clause states that if f is On, it
is possible to get to some state where out is High. We often
drop the keyword SPEC when the meaning is clear from the
context.

 Model checking can be applied to test generation and
test coverage evaluation [1],[6]. In both uses, one first
chooses a test criterion, that is, decides on a philosophy
about what properties of a specification must be exercised
to constitute a thorough test.
MODULE main

VAR

d: 0..5; b: 0..11;

f: {On, Off};

out: {Low, High};

a: 0..16; e: 0..1;

ASSIGN

init(e) := 0;

next(e) := case

f = On : 1;

1 : 0;

esac;

a := e * d + b;

out := case

a > 10 : High;

1 : Low;

esac;

SPEC AG (f = On -> EF out = High)
Figure 1. An SMV example.

 One applies the chosen test criterion to the specification
to derive test requirements, (i.e., a set of individual proper-
ties to be tested). To use a model checker, these require-
ments must be represented as temporal logic formulas [2].
To generate tests, the test criterion is applied to yield nega-
tive requirements, that is, requirements that are considered
satisfied if the corresponding temporal logic formulas are
inconsistent with the state machine. For instance, if the cri-
terion is state coverage, the negative requirements are that
the machine is never in state 1, never in state 2, etc.
 When the model checker finds that a requirement is in-
consistent, it produces a counterexample. Again, in the case
of state coverage, the counterexamples would have stimulus
that puts the machine in state 1 (if it is reachable), another
to put the machine in state 2, and so on. Several test criteria
have been proposed, including branch coverage [11] and
mutation adequacy [1]. We use t-way coverage as a test
criterion. Different methods can be used to derive the test
requirements for t-way coverage; we present some possi-
bilities in the Discussion section.

4. TCAS Experiment
 Our experiment used a module of Traffic Collision Avoidance
System (TCAS). The module is part of a set of C programs that
has been used in other evaluations of software testing methods
[13], [22],[24].

 The program came with 41 faulty versions derived by
manually seeding realistic faults. Two thirds of the faulty
versions have single changes such as replacing a constant
with another constant, replacing >= with >, or dropping a
condition. The rest involve either multiple changes or more
complex changes. These faulty versions served as the basis
of our evaluation. The program has 12 input variables
specifying parameters of own aircraft and another aircraft
and one output variable, alt_sep, a resolution advisory to
maintain safe altitude separation between the two aircraft.
The program computes intermediate values and prints
alt_sep to the standard output. A model of the program was
written in SMV. The model, together with the C program,
was used in evaluations of specification-based mutation
testing methods [22]. In this project, we used the SMV
model to produce counterexamples.
 To make model checking feasible, the domains of input
variables were partitioned into equivalence classes and only
one representative value from every equivalence class was
chosen. The TCAS model has three Boolean and nine
scalar input parameters, shown in Figure 2. The output
variable can take one of three values.

Cur_Vertical_Sep : {299, 300, 601};

High_Confidence : boolean;

Two_of_Three_Reports_Valid : boolean;
Own_Tracked_Alt : {1, 2};

Other_Tracked_Alt : {1, 2};

Own_Tracked_Alt_Rate : {600,601 };

Alt_Layer_Value : 0..3;

Up_Separation :
{0,399,400,499,500,639,640,739,740,840 };

Down_Separation :
{0,399,400,499,500,639,640,739,740,840};

Other_RAC : { NO_INTENT, DO_NOT_CLIMB,
DO_NOT_DESCEND };

Other_Capability : {TCAS_TA, OTHER};

Climb_Inhibit : boolean;
Figure 2. TCAS variables.

 There are 230,400 possible combinations of these
variables, but covering array methods make it possible to
cover all 6-way combinations with only 10,902 input
combinations, and all 5-way combinations with only 4,220
combinations (see Table 1).

Table 1. Combinations produced for TCAS example

2-way 3-way 4-way 5-way 6-way

100 405 1375 4220 10902

5. Discussion: Integrating Combinatorial
Methods with Model Checking

 While model checking has been used for test generation
in a number of previous studies, it had not been integrated
with combinatorial testing prior to this work. One of the
significant questions we investigated was how input
variable combinations should be used to generate tests.
Given assertions of the form AG(P -> AX(R)), and t-
way variable combinations, v1 & v2 & ... & vt,
counterexamples can be produced in several ways. At least
three schemes are possible. Method 1 simply combines the
input variable combination (the expression v1 & v2 &
... & vt) in a conjunction with the original predicate P:

Method 1. Use AG(v1 & v2 & ... & vt & P
-> AX !(R))

 A disadvantage of this method is that as the interaction
level is increased, the variable combinations v1 ... vt will
include more variables in the conjunction, because there are
fewer “don’t care” conditions (those with no specified value
for a particular variable in a combination). As a result,
some of the v1 ... vt may result in v1 & v2 & ... & vt & P
evaluating to 0, preventing the model checker from finding
a counterexample (since 10 ≡→ Q for any Q , the
expression becomes trivially true and no counterexample is
possible).
 The problems of method 1 can be prevented by
replacing the consequent of the assertion with 0 (or !1), and
removing P. This causes the model checker to find
counterexamples for all of the variable combinations. But
because many of the combinations include “don’t care”
conditions, and the model checker makes non-deterministic
choices if a variable value is not asserted, the
counterexamples produced may not cover all values of R.

Method 2. Use AG(v1 & v2 & ... & vt
-> AX !(1))

Method 2 can be strengthened by including assertions for
each possible value of expression R. This forces the model
checker to attempt to produce counterexamples for each,
not just one, value of R.
Method 3. Use AG(v1 & v2 & ... & vt
-> AX !(R))
 The last assertion means that for the chosen input vari-
able combination, R is always false on the next step. So
SMV will choose any counterexample where the combina-
tion of input variables will result in satisfaction of R. This is
sufficient for the SMV example used in this paper, since it
simply computes the output based on the inputs. However,
reactive systems have a state, and the output depends not
only on the inputs but also on the current state. For the case
of reactive systems, we can strengthen Method 3 by includ-

ing a particular state in the conjunction of input variables.
Given a set of inputs produced by combinatorial testing, the
model checker will produce a counterexample that leads to
the chosen state, applies the inputs, and produces the ex-
pected outputs.
 While Method 3 ensures the production of all result
values, it does not guarantee that tests for t-tuples at an
interaction coverage strength of t will be a subset of tests
for interaction level t+1. Thus in some cases, faults
detected by a particular interaction level may not be
detected by a higher level, because of “don’t care”
conditions. For “don’t care” conditions, we do not assert
any value for the variable, so the model checker will non-
deterministically select a value. In other words, tests for t-
way interaction are not necessarily a subset of tests for
(t+1)-way interactions
 Table 2 shows the number of input combinations and
test cases produced for TCAS using pairwise through 6-way
interaction levels. There is not a one-to-one mapping
between input combinations and test cases in Table 2
because counterexamples are produced for each of the
possible outputs, and there are so many combinations with
"don't care" conditions, SMV can produce more
counterexamples than there are combinations. For
example, a boolean input 010XXX could be mapped to two
different results, since the model checker will keep trying
until it finds values for the "X" - "don't care" - values that
will produce a counterexample. So an input of 010XXX
could produce a test case with output value UP and another
test with output value DOWN, since the X's will get filled
in with values that produce the two different
counterexamples. This is not a significant problem in
practice since they are both valid test cases. The model
checker may also produce test cases that are redundant in
the sense that one is a prefix of another. This output could
be filtered easily, but the small number of extra test cases
we generated only cost a few seconds of extra computation
time. As can be seen from Table 2, the percentage of
redundant tests declines rapidly as a factor as the interaction
coverage increases. Of 17,470 tests generated, 17,039, or
97.5%, are unique.

Table 2. Test cases produced for
input variable combinations

 2-way 3-way 4-way 5-way 6-way

Comb. 100 405 1375 4220 10902

Cases 156 461 1450 4309 11094

 Counterexamples produced by the model checker were
post-processed into test harness code and executed on the
41 versions of the TCAS module. We later determined that
two pairs of the TCAS versions were equivalent, and a third
had a seeded source code error that did not result in a fault

in the executable. (The correct version has an array of
length 4 that is length 3 in the faulty version, but the array is
followed by empty space in memory so an execution fault
did not occur; compiled with gcc ver. 3.4.4 under CygWin,
on Windows XP.) Results are shown in Figure 3 and Table
3.

Table 3. Fault detection rate by interaction level

 2-way 3-way 4-way 5-way 6-way

Number
detected

20 28 34 36 37

Cumulative
detected

20 28 34 38 38

Detection
Rate

53% 74% 89% 100% 100%

Detect ion Rate for TCAS Seeded
Errors

0%

20%

40%

60%

80%

100%

2 way 3 way 4 way 5 way 6 way

Fault I nteraction level

Detection
rate

Figure 3. Fault detection rate by interaction level

 The percentages of errors per failure triggering fault
interaction (FTFI) level shown in Figure 3 are comparable
to those we found by analyzing failure reports in large
systems [14],[15],[27]. However, the faults-per-FTFI curve
grows more slowly for this example than for the real-world
software previously tested, suggesting that the seeded errors
were relatively difficult. As shown in Figure 4, the number
of tests per detected error approximately doubles with each
interaction level (up to 5-way, which detected 100%), but
since tests are produced and analyzed automatically, the
cost in terms of time is relatively unaffected. With realistic
software, it is inevitable that more human intervention will
be required to review tests and results, so testing to high
FTFI levels is likely to have significantly higher costs.

6. Scaling Up: A Realistic Application
 Methods described in this paper will be applied to three
modules of the Personal Identity Verification (PIV) smart

card, with 43, 26, and 29 variables respectively. Our
current version of the extended IPO algorithm can generate
combinations up to 4-way interactions in a few hours for
each of these modules. For larger problems, we have
developed an algorithm that can generate covering arrays
for 50 – 500 parameters, depending on the level of
interaction [16]. The algorithm is suboptimal in that it
produces more than the minimal number of tests, but the
increment beyond optimal is small, and additional tests
have relatively small cost in execution time, since they are
generated automatically.

Tests per error

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

2 way 3 way 4 way 5 way 6 way

Fault Interaction level
Te

st
s Tests per error

Figure 4. Number of tests per detected error

 The second component of the method, model checking,
is also subject to scaling problems. Once input
combinations have been produced, test generation and
execution can be distributed across any number of
machines, since there are no dependencies between tests.
Using 100 machines it is practical to generate and execute
106 tests in a few weeks, a level of effort consistent with
most development budgets.
 In addition we are investigating the use of combinatorial
methods with the TVEC test generation tool [3], [7], which
is already being used to produce tests for the PIV card.
TVEC is efficient and appears to be suitable for integration
with combinatorial methods.

7. Conclusions
 This work serves as a proof of concept for integrating
combinatorial testing with model checking to provide
automated specification based testing. One valuable result
from the project was determining the most efficient way to
integrate combinatorial testing with model checking.
Results suggest that this approach is efficient and can be
effective.

8. Acknowledgments
 We thank Paul Black for insightful comments about the
use of model checking for test generation. We are grateful

to Renee Turban for improving our understanding of cover-
ing array algorithms and for many helpful suggestions on
this paper.

9. References

[1] P. E. Ammann, P. E. Black, and W. Majurski. Using model

checking to generate tests from specifications. In Proc. Sec-
ond IEEE Internat. Conf. on Formal Engineering Methods
(ICFEM’98), pp. 46–54. IEEE Computer Society, Dec. 1998.

[2] P. E. Ammann and P. E. Black. A specification-based cover-
age metric to evaluate test sets. In Proc. Fourth IEEE Inter-
nat. High-Assurance Systems Engineering Symp. (HASE 99),
pp. 239–248. IEEE Computer Society, November 1999.

[3] Blackburn, M.R., R.D. Busser, A.M. Nauman, R. Knicker-
bocker, R. Kasuda, Mars Polar Lander Fault Identification
Using Model-based Testing, Proceeding in IEEE/NASA 26th
Software Engineering Workshop, p. 163, November 2001.

[4] R. Brownlie, J. Prowse, and M.S. Phadke. Robust Testing of
AT&T PMX/StarMail using OATS. AT&T Technical Jour-
nal, 71(3): 41-47 (May/June 1992).

[5] R. Bryce, C.J. Colbourn, M.B. Cohen. A Framework of
Greedy Methods for Constructing Interaction Tests. The 27th
International Conference on Software Engineering (ICSE),
St. Louis, Missouri, pages 146-155. (May 2005).

[6] J. Callahan, F. Schneider, and S. Easterbrook. Automated
software testing using model-checking. In Proc. 1996 SPIN
Workshop, Aug 1996.

[7] Chandramouli, R. “Security Functional Testing Using
Model-Based Test Automation Approach,” Quality Week,
pp. 3 – 6, (Sept. 2002).

[8] D.M. Cohen, S.R. Dalal, J. Parelius, and G.C. Patton. The
Combinatorial Approach to Automatic Test Generation.
IEEE Software, vol. 13, no. 5: 83-88, (September 1996).

[9] S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C.M. Lott,
G.C. Patton, B.M. Horowitz, Model-Based Testing in Prac-
tice, International Conference on Software Engineering,
1999.

[10] R.A. Fischer. The Arrangement of Field Experiments. Jour-
nal of Ministry of Agriculture of Great Britain. 1926.
33:503-513. Available on-line:
http://www.library.adelaide.edu.au/digitised/fisher/48.pdf

[11] A. Gargantini and C. Heitmeyer. Using model checking to
generate tests from requirements specifications. In
Proceedings of the Joint 7th European Software Engineering
Conference and 7th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp.
146-162, Toulouse, France, September 1999.

[12] Grindal, Mats, Offutt, Jeff, and Andler, Sten F. “Combina-
tion Testing Strategies: A Survey,” Journal of Software Test-
ing, Verification and Reliability vol. 15, no. 3, pp. 167-199.

[13] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experi-
ments on the effectiveness of dataflow- and controlflow-
based test adequacy criteria. In Proc. Sixteenth Internat.
Conf. On Software Engineering, pp. 191–200, May 1994.

[14] D.R. Kuhn, D.R. Wallace, and A.M Gallo, “Software Fault
Interactions and Implications for Software Testing,” IEEE
Transactions on Software Engineering, 30(40):1-4 (2004)

[15] D.R. Kuhn, M.J. Reilly, "An Investigation of the Applicabil-
ity of Design of Experiments to Software Testing", 27th
NASA/IEEE Software Engineering Workshop, IEEE Com-
puter Society, pp. 91-95, 4-6 December, 2002.

[16] D.R. Kuhn, "An Algorithm for Generating Very Large Cov-
ering Arrays", NISTIR 7308, 20 March 2006.

[17] Y. Lei, K.C. Tai. In-parameter order: a Test Generation
Strategy for Pairwise Testing. Proceedings of the Third
IEEE High Assurance Systems Engineering Symposium, pp.
254-261, IEEE, Nov. 1998.

[18] R. Mandl. Orthogonal Latin squares: An application of ex-
periment design to compiler testing. Communications of the
ACM, 28(10): 1054-1058 (October 1985).

[19] J.D.McGregor, D.A. Sykes, Practical Guide to Testing Ob-
ject-Oriented Software,Addison-Wesley, 2001.

[20] K. L. McMillan. Symbolic Model Checking. Kluwer Aca-
demic Publishers, 1993.

[21] V.N. Nair, D.A. James, W.K. Erlich, J. Zevallos, “A Statisti-
cal Assessment of Some Software Testing Strategies and Ap-
plication of Experimental Design Techniques”, Statistica
Sinica, vol. 8, no. 1, pp 165-184, 1998.

[22] V. Okun, P. E. Black, and Y. Yesha, Testing with Model
Checker: Insuring Fault Visibility, WSEAS Transactions on
Systems, Vol. 2, Issue 1, pages 77-82, January 2003.

[23] R.S. Pressman. Software Engineering: A Practitioner's Ap-
proach 5th edition, McGraw Hill, 2001.

[24] G. Rothermel and M. J. Harrold. Empirical studies of a safe
regression test selection technique. IEEE Transactions on
Software Engineering, 24(6): 401-419, 1998.

[25] B. D. Smith, M. S. Feather, N. Muscettola. “Challenges and
Methods in Validating the Remote Agent Planner”, Proceed-
ings of the Fifth International Conference on Artificial Intel-
ligence Planning Systems (AIPS-2000), Breckenridge, CO.

[26] K.C. Tai, Y. Lei. A Test Generation Strategy for Pairwise
Testing. IEEE Trans. Software Eng. vol. 28, no. 1, 109-111
(January 2002).

[27] D.R. Wallace, D.R. Kuhn. “Failure Modes in Medical De-
vice Software: an Analysis of 15 Years of Recall Data”, In-
ternational Journal of Reliability, Quality, and Safety Engi-
neering, Vol. 8, No. 4, 2001.

